

NACHWEIS-DOKUMENTATION – EINSPARZÄHLERPROJEKT (ESZ-A-2018044)

Hörburger GmbH, Objekt Nr. 9 – Einzelhandelsfiliale

1. Systembeschreibung

Betrachtet wird das Gesamt-System "Filiale" in Bezug auf den elektrischen Gesamt-Energiebedarf. Zusätzlich genutzte Wärme ist vernachlässigbar, da diese nur für statische Heizkörper auf Nebenflächen genutzt wird. Die Verbraucher, die in die energetische Betrachtung zur Optimierung miteinbezogen werden, sind: Beleuchtung, Lüftung und Heizung sowie Klimatisierung über die Wärmepumpe. Optimiert wird der Energiebedarf durch die Implementierung von bedarfsgeführten Regel- und Steuereinheiten für Klimatisierung, Lüftung sowie Beleuchtung. Als weitere Maßnahme werden ineffiziente Komponenten ausgewechselt.

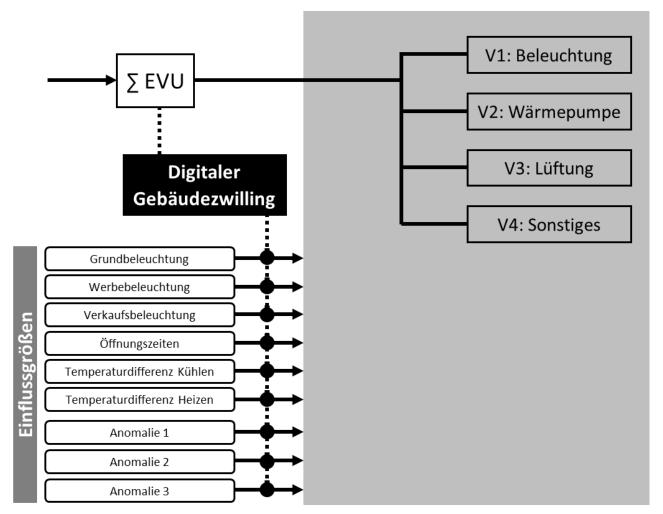


Abbildung 1: Systemskizze mit den Einflussgrößen für die betrachtete Filiale

Messkonzept: Standard-Messkonzept

Energieeffizienzmaßnahmen:

- 1. Austausch von konventioneller Beleuchtung durch LED
- 2. Austausch von Klimaaußengeräten durch effizientere Anlagen
- 3. Bedarfsgeführte Ansteuerung von Beleuchtung
- 4. Bedarfsgeführte Ansteuerung von Klimatisierungskomponenten und Lüftungsanlage

2. Modellbildung

Beschreibung der Einflussgrößen

Einflussgröße	Beschreibung		
Werbebeleuchtung (x1)	Beschreibung der Schaltzeiten der Werbebeleuchtung		
Öffnungszeiten (x2)	Beschreibung des Zeitplans der Geschäftszeiten der Filiale		
Grundbeleuchtung (x7)	Beschreibung der Schaltzeiten der Grundbeleuchtung		
Verkaufsbeleuchtung (x6)	Beschreibung der Schaltzeiten der Verkaufsbeleuchtung		
Temperaturdifferenz Kühlen (x8)	Wert zur Beschreibung des Kühl-Falles in Abhängigkeit der Außentemperatur		
Temperaturdifferenz Heizen (x9)	Wert zur Beschreibung des Heiz-Falles in Abhängigkeit der Außentemperatur		
Anomalie 1 (x3)	Zusätzliche identifizierte verhinderbare Last an Sonn- und Feiertagen		
Anomalie 2 (x4)	Zusätzliche identifizierte verhinderbare Last mit Zeitbezug und Tagesbezug		
Anomalie 3 (x5)	Handübersteuerung 1 einzelner Klimageräte zu Nicht-Öffnungszeiten, die verhindert werden kann, mit Tagesbezug		

Tabelle 1: Einflussgrößen für die Modellbildung

Alle Einflussgrößen sind stündlich verfügbar. Ein einfacher **Zeitbezug mit der Funktion AN/AUS** wird wie folgt beschrieben:

- "1" als Stundenwert beschreibt, dass die Komponente eingeschaltet ist.
- "0" als Stundenwert beschreibt, dass die Komponente ausgeschaltet ist.
- Für Einflussgrößen nach der Effizienzmaßnahme liegen die Daten in einer höheren Auflösung vor, es werden zusätzlich neben einer "1" und einer "0" auch die Werte "0,25", "0,5" und "0,75" für die Aktivität von 15, 30 und 45 Minuten genutzt.

Anomalien:

• Die Anomalien beziehen sich alle auf erhöhte Lastgänge. Es werden separate Einflussgrößen genutzt, da sich die Beträge der erhöhten Lasten unterscheiden.

Außentemperatur-Einfluss und Schwellwert-Kühlen/-Heizen:

- Der Heiz-Fall und Kühl-Fall wird als Teil der elektrischen Last separat betrachtet.
- Analysen haben gezeigt, dass für die betrachtete Filiale innerhalb eines großen Temperaturspektrums geheizt und gekühlt wird.
- Ein starker Anstieg in der Nutzung der Kühlung verzeichnet sich im Kühl-Ast ab einer Außentemperatur von > 10 °C.
- Im Heiz-Ast verzeichnet sich ab einer Außentemperatur von < 10 °C eine zunehmende Aktivität der Heiz-Funktionalität.
- Zusätzliche Analysen haben gezeigt, dass die höchste Korrelation zwischen Außentemperatur und elektrischer Last resultiert, wenn Heizaktivität ab < 10 °C und Kühlaktivität ab > 10 °C angenommen wird.

Die Werte für den Heiz-Fall und Kühl-Fall beschreiben sich wie folgt:

- Heiz-Fall: "Schwellwert-Heizen T_S " "Außentemperatur T_A " \to Einflussgröße Heiz-Fall: T_S - T_A
- Kühl-Fall: "Außentemperatur T_A" "Schwellwert-Kühlen T_S" → Einflussgröße Kühl-Fall: T_A-T_S

Baseline-Zeitraum

Zur Bildung des Modells und als Baseline wurde der Zeitraum vom 01.01.2016 bis zum 04.08.2018 vor Umsetzung der Energieeffizienzmaßnahmen gewählt. Die Umsetzung der Maßnahmen erfolgten im August 2018, sodass der Berichtzeitraum ab dem 01.10.2018 begann.

Baseline-Bildung

Zur Baseline-Bildung wird die Modellbildung auf Basis der Regressions-Analyse anhand von Stunden-Werten durchgeführt. Die hohe Auflösung auf Stundenbasis dient außerdem dazu das Modell als Digitalen Gebäudezwilling sowohl zur Prognose von Energieverbräuchen und -potenzialen als auch zur Erkennung von Anomalien einzusetzen. Als Lastgangdaten wurden Daten vom RLM-Einspeisezähler des Messstellenbetreibers genutzt.

3. Ergebnisse und Auswertung

Beispielhafte Ausschnitte des Lastgangs

Im Folgenden wird der tatsächliche Lastgang dem Modelllastgang in drei Darstellungen gegenübergestellt. Dazu wird der Verlauf im Zeitraum der Baseline-Bildung, der Effizienz-Maßnahme sowie des Berichtzeitraums aufgezeigt. Der unbereinigte Lastgang (in rot) zeigt den tatsächlich gemessenen Lastgang auf. Der bereinigte Lastgang (in schwarz) zeigt den durch die Einflussgrößen gebildeten Lastgang als Modell auf. Im Baseline-Zeitraum kann gegengeprüft werden, wie gut das Modell den IST-Lastgang abbildet. Die zweite Darstellung im Umsetzungszeitraum der Effizienzmaßnahme zeigt den Rückgang der Last durch die Maßnahme auf. In der dritten Darstellung ist im weiteren Verlauf des Berichtzeitraums zu sehen, inwieweit sich der Betrieb der Filiale geändert hat und die resultierende Auswirkung auf den Lastgang.

Abbildung 2: Ausschnitt aus Baseline-Zeitraum (November 2017 – April 2018). Rot: unbereinigt; Schwarz: bereinigt.

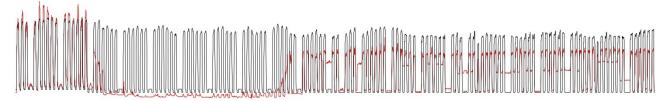


Abbildung 3: Ausschnitt Umsetzungszeitraum der Effizienzmaßnahme (Juli 2018 - Dezember 2018). Rot: unbereinigt; Schwarz: bereinigt.

Abbildung 4: Ausschnitt Berichtzeitraum (November 2019 - März 2020). Rot: unbereinigt; Schwarz: bereinigt.

Ergebnis der Baseline-Bildung

Als Ergebnis der statistischen Modell-Bildung ergibt sich folgende mathematische Funktion in Abhängigkeit der neun Einflussgrößen:

Lastgang
$$[kW] = 3,21 + 0,65 * x1 + 17,88 * x2 + 1,66 * x3 + 1,92 * x4 + 1,38 * x5 + 3,46 * x6 + 7,71 * x7 + 0,37 * x8 + 0,47 * x9$$

Wobei die Zuordnung zu den Einflussgrößen aus der Tabelle der vorherigen Seite entnommen werden kann.

Die Lineare Regression zur Erstellung des Modells zeigt dabei folgende statistische Ergebnis-Werte auf:

Multipler Korrelationskoeffizient	0,967
Bestimmtheitsmaß	0,934
Adjustiertes Bestimmtheitsmaß	0,934
Standardfehler	3,97
Beobachtungen	22.728

Tabelle 2: Statistische Ergebniswerte der linearen Regression

Einsparungen im Zeitraum 01.10.2018 – 14.06.2023 (Ergebnis aus Berechnung nach Modellanpassung):

Energiemenge: 151.267 kWh

Effizienzsteigerung: 24 % (eingesparte Energiemenge in Bezug auf Modell-Verbrauch im Betrachtungszeitraum)

Ergänzende Anmerkungen nach Überarbeitung zum 4. Zwischennachweis 2022:

- Die Abhängigkeit der Last von der Außentemperatur während der Öffnungszeiten am Standort wurde durch Auftragung der Messwerte im Baseline-Zeitraum in einem Streudiagramm untersucht.
- Der Schwellwert für den Außentemperatureinfluss im Kühl-Fall wurde von $T_S = 10$ °C auf $T_S = 17$ °C korrigiert.
- Nach Neuberechnung der Modellparameter ergibt sich für den Modelllastgang folgende Funktion:

Lastgang_neu [
$$kW$$
] = 3,27 + 0,65 * x 1 + 17,85 * x 2 + 1,46 * x 3 + 1,90 * x 4 + 1,38 * x 5 + 3,30 * x 6 + 8,79 * x 7 + 0,66 * x 8 + 0,34 * x 9

Mit den statistischen Werten:

Multipler Korrelationskoeffizient: 0,968; Bestimmtheitsmaß: 0,936; Adj. Bestimmtheitsmaß: 0,936; Standardfehler: 3,92.

• Die aus der Differenz von Modell- und gemessenem Lastgang berechneten Energieeinsparungen ändern sich im bisher betrachteten Nachweiszeitraum um insgesamt +2 %. Nachfolgend eine vergleichende Übersicht der bisherigen (eingereichten) mit den neuberechneten Summen.

	Berechnete Energieeinsparunge		
	Bisheriges Modell (eingereicht)	Nach Modellanpassung	Abweichung
1. Förderjahr	15.918	16.389	3 %
2. Förderjahr	34.534	35.275	2 %
3. Förderjahr	20.111	20.522	2 %
4. Förderjahr	37.595	37.692	0 %
Gesamt	108.158	109.877	2 %

Tabelle 3: Vergleich der berechneten Energieeinsparungen in kWh vor und nach der Modellanpassung

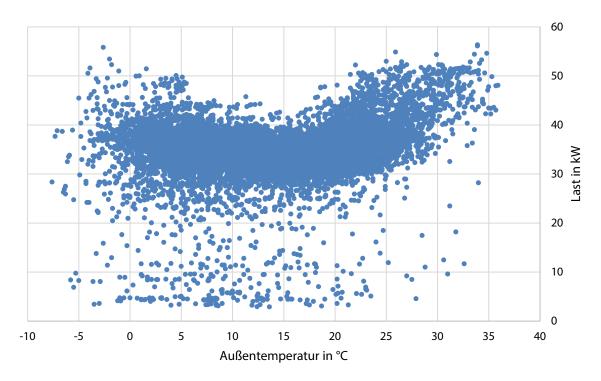


Abbildung 5: Temperaturabhängigkeit der Last im Baseline-Zeitraum (01.01.16 – 04.08.18, Öffnungszeiten)

Sie haben Fragen zu diesem Nachweis oder ganz allgemein zum Förderprogramm Einsparzähler und unseren Lösungen?

Wir sind gerne für Sie da.

Hörburger GmbH

Niederlassung Erfurt Am Urbicher Kreuz 32 99099 Erfurt

Ihr Ansprechpartner: Anni Blumenstock Tel. +49 (0) 361 / 44214-0 E-Mail: erfurt@hoerburger.de

www.hoerburger.de

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages